Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress.

نویسندگان

  • Teresa Capell
  • Ludovic Bassie
  • Paul Christou
چکیده

We have generated transgenic rice plants expressing the Datura stramonium adc gene and investigated their response to drought stress. We monitored the steady-state mRNA levels of genes involved in polyamine biosynthesis (Datura adc, rice adc, and rice samdc) and polyamine levels. Wild-type plants responded to the onset of drought stress by increasing endogenous putrescine levels, but this was insufficient to trigger the conversion of putrescine into spermidine and spermine (the agents that are believed to protect plants under stress). In contrast, transgenic plants expressing Datura adc produced much higher levels of putrescine under stress, promoting spermidine and spermine synthesis and ultimately protecting the plants from drought. We demonstrate clearly that the manipulation of polyamine biosynthesis in plants can produce drought-tolerant germplasm, and we propose a model consistent with the role of polyamines in the protection of plants against abiotic stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant Craterostigma plantagineum.

In this work, we have studied the transcriptional profiles of polyamine biosynthetic genes and analyzed polyamine metabolic fluxes during a gradual drought acclimation response in Arabidopsis thaliana and the resurrection plant Craterostigma plantagineum. The analysis of free putrescine, spermidine and spermine titers in Arabidopsis arginine decarboxylase (adc1-3, adc2-3), spermidine synthase (...

متن کامل

Dissecting Rice Polyamine Metabolism under Controlled Long-Term Drought Stress

A selection of 21 rice cultivars (Oryza sativa L. ssp. indica and japonica) was characterized under moderate long-term drought stress by comprehensive physiological analyses and determination of the contents of polyamines and selected metabolites directly related to polyamine metabolism. To investigate the potential regulation of polyamine biosynthesis at the transcriptional level, the expressi...

متن کامل

Evaluation of MYB93 and MAD8 Genes in Transgenic and Non-Transgenic Rice

Increasing drought tolerance, especially in rice, which is one of the most important crops in Asia, is necessary. Transcription factors are specific sequence DNA-binding proteins that are capable of activating or suppressing transcription. These proteins regulate gene expression levels by binding to cis regulatory elements in the promoter of target genes to control various biological processes ...

متن کامل

Overexpression of an AP2/ERF Type Transcription Factor OsEREBP1 Confers Biotic and Abiotic Stress Tolerance in Rice

AP2/ERF-type transcription factors regulate important functions of plant growth and development as well as responses to environmental stimuli. A rice AP2/ERF transcription factor, OsEREBP1 is a downstream component of a signal transduction pathway in a specific interaction between rice (Oryza sativa) and its bacterial pathogen, Xoo (Xanthomonas oryzae pv. oryzae). Constitutive expression of OsE...

متن کامل

OsSGL, a Novel DUF1645 Domain-Containing Protein, Confers Enhanced Drought Tolerance in Transgenic Rice and Arabidopsis

Drought is a major environmental factor that limits plant growth and crop productivity. Genetic engineering is an effective approach to improve drought tolerance in various crops, including rice (Oryza sativa). Functional characterization of relevant genes is a prerequisite when identifying candidates for such improvements. We investigated OsSGL (Oryza sativa Stress tolerance and Grain Length),...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 26  شماره 

صفحات  -

تاریخ انتشار 2004